Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.612
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200235, 2024 May.
Article in English | MEDLINE | ID: mdl-38621190

ABSTRACT

OBJECTIVES: To assess the daily function of children with anti-N-methyl-d-aspartate receptor encephalitis (NMDARe) after a minimal follow-up of 5 years. METHODS: Patients 18 years and younger by the time of disease onset, whose serum and CSF were studied in our center between 2013 and 2017, were included in the study. Patients' daily life function was assessed by their physicians using a 15-domain question format (Liverpool Outcome Score). RESULTS: Of 76 patients, 8 (11%) died and 68 were followed for a mean of 7.1 years (SD 1.5 years, range: 5.0-10.1). Three outcome patterns were identified: full recovery (50; 73%); behavioral and school/working deficits (12; 18%); and multidomain deficits (6; 9%) involving self-care ability, behavioral-cognitive impairment, and seizures. Younger age of disease onset was significantly associated with multidomain deficits (OR 1.6, 95% CI 1.02-2.4, p = 0.04), particularly in children younger than 6 years, among whom 8 of 23 (35%) remained sociofamiliar dependent. DISCUSSION: After a minimal follow-up of 5 years, most children with NMDARe had substantial or full functional recovery, but approximately one-fifth remained with behavioral and school/working deficits. The younger the patient at disease onset, the more probable it was to remain with multidomain deficits and dependent on sociofamiliar support.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Child , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Receptors, N-Methyl-D-Aspartate , Seizures , Recovery of Function
2.
Cell Mol Neurobiol ; 44(1): 32, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568450

ABSTRACT

The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.


Subject(s)
Brain Injuries , Calcium Channels , Ischemic Postconditioning , Ruthenium Compounds , Animals , Mice , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate , Adenosine Triphosphate
3.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652404

ABSTRACT

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Subject(s)
Apoptosis , Benzoquinones , Cell Survival , Colorectal Neoplasms , Dizocilpine Maleate , Mitochondria , Receptors, N-Methyl-D-Aspartate , Humans , Benzoquinones/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , HT29 Cells , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
4.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612544

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Receptors, N-Methyl-D-Aspartate , Alzheimer Disease/drug therapy , Glutamic Acid
5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612801

ABSTRACT

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Subject(s)
Astrocytes , Neocortex , Animals , Mice , Receptors, N-Methyl-D-Aspartate , Neurons , Glutamic Acid , Ion Channels
6.
CNS Neurosci Ther ; 30(4): e14724, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615365

ABSTRACT

BACKGROUND: Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE: In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS: Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS: Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS: Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.


Subject(s)
Quercetin , Receptors, N-Methyl-D-Aspartate , Humans , Animals , Rats , Quercetin/pharmacology , Quercetin/therapeutic use , Depression/drug therapy , Depression/etiology , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
7.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598639

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Subject(s)
Receptors, Glycine , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione , Cryoelectron Microscopy , Glycine/metabolism , Neurotransmitter Agents , Mammals/metabolism
8.
Acta Neurobiol Exp (Wars) ; 84(1): 89-97, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38587320

ABSTRACT

Opioid addiction is critically dependent on the activation of N­methyl­D­aspartate (NMDA) receptors, which are widely found in the mesocorticolimbic system. Meanwhile, opioid addiction may affect the expression level of NMDA receptor subunits. The existence of GluN3 subunits in the NMDA receptor's tetramer structure reduces the excitatory current of the receptor channel. We evaluated the changes in the mRNA expression pattern of the GluN3B subunit of the NMDA receptor in rat brains following acute and chronic exposure to morphine. Chronic, escalating intraperitoneal doses of morphine or saline were administered twice daily to male Wistar rats for six days. Two other groups were injected with a single acute dose of morphine or saline. The mRNA level of the GluN3B subunit of the NMDA receptor in the striatum, hippocampus, and nucleus accumbens (NAc) was measured by real­time PCR. mRNA expression of the GluN3B subunit was considerably augmented (3.15 fold) in the NAc of animals chronically treated with morphine compared to the control group. The difference between rats that were chronically administered morphine and control rats was not statistically significant for other evaluated brain areas. In rats acutely treated with morphine, no significant differences were found for GluN3B subunit expression in the examined brain regions compared to the control group. It was concluded that chronic exposure to morphine notably increased the GluN3B subunit of the NMDA receptor in NAc. The extent of the impact of this finding on opioid addiction and its features requires further evaluation in future studies.


Subject(s)
Morphine , Opioid-Related Disorders , Rats , Male , Animals , Morphine/pharmacology , Receptors, N-Methyl-D-Aspartate , Rats, Wistar , Brain/metabolism , Opioid-Related Disorders/metabolism , RNA, Messenger/metabolism
9.
Sci Adv ; 10(9): eadg2636, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427737

ABSTRACT

Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.


Subject(s)
Genome-Wide Association Study , Receptors, AMPA , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics
10.
Sheng Li Xue Bao ; 76(1): 1-11, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38444127

ABSTRACT

Perineuronal nets (PNNs) are specialized extracellular matrix (ECM) structures present in the central nervous system (CNS) and have been identified as significant regulators of developmental plasticity in the developing cortex. PNNs are particularly enriched in the cortex surrounding parvalbumin-expressing (PV+) cells. A growing body of evidence suggests that the abnormalities in PV+ neurons and PNNs are associated with various neurological disorders, including schizophrenia, which is a neurodevelopmental defect disease. The N-methyl-D-aspartate receptor (NMDAR) selective antagonist is frequently employed to establish animal models of schizophrenia in laboratory settings. The crucial involvement of GluN2B-containing NMDARs in the development of CNS has been extensively established. However, the role of GluN2B in the pathophysiology of schizophrenia has yet to be thoroughly investigated. The present study inhibited GluN2B function through intraperitoneal infusion of the GluN2B selective antagonist ifenprodil into juvenile mice aged 3-4 weeks, followed by the administration of social stress when these mice reached 9 weeks of age. Then, immunofluorescence staining was employed to examine the changes in the PNNs and PV+ cells, an acoustic startle and prepulse inhibition test was used to detect activities of the PV+ cells, and Western blot was used to quantify the protein expression levels of GluN2A and GluN2B in the prefrontal cortex (PFC). The study revealed that in the PFC of mice subjected to GluN2B antagonist treatment in early life and social stress in adulthood, there was an increase in the number of PV+ cells wrapped by PNNs, and a decrease in the activation of PV+ cells during the prepulse inhibition test, which is an indicator of sensory gating functions, as well as changes in the protein expression levels of GluN2A and GluN2B, which resulted in an increase in the ratio of GluN2A to GluN2B. These aberrations in the mice are comparable to those observed in animal models and patients with schizophrenia. The findings suggest that even a transient hypofunction of GluN2B in early life poses a significant risk for the emergence of schizophrenia symptoms in adulthood.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Stress, Psychological , Animals , Humans , Mice , Cell Adhesion Molecules , Central Nervous System , Cerebral Cortex , Extracellular Matrix , Nuclear Proteins
11.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474476

ABSTRACT

Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Serotonin , Molecular Structure , Cryoelectron Microscopy , Antidepressive Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
12.
J Physiol Sci ; 74(1): 16, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475711

ABSTRACT

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABAB receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application. Oscillations comprised a non-NMDA receptor-dependent initial phase and a later NMDA receptor-dependent oscillatory phase, with the oscillator located in the upper layer of the OSC. Baclofen was applied to investigate the actions of GABAB receptors. The later NMDA receptor-dependent oscillatory phase completely disappeared, but the initial phase did not. These results suggest that GABAB receptors mainly act on NMDA receptor, in which metabotropic actions of GABAB receptors may contribute to the attenuation of NMDA receptor activities. A regulatory system for network oscillation involving GABAB receptors may be present in the OSC.


Subject(s)
Receptors, GABA-B , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, GABA-B/metabolism , Somatosensory Cortex/metabolism , Baclofen
13.
Eur J Pharmacol ; 971: 176520, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38527701

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.


Subject(s)
Anesthetics , Cognitive Dysfunction , Postoperative Cognitive Complications , Humans , Postoperative Cognitive Complications/etiology , Receptors, N-Methyl-D-Aspartate , Pain/complications , Inflammation/complications , Postoperative Complications/etiology , Cognitive Dysfunction/complications
14.
EBioMedicine ; 102: 105045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471394

ABSTRACT

BACKGROUND: Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS: We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS: Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION: Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING: This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Mice , Brain/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
15.
Pharmacol Biochem Behav ; 238: 173740, 2024 May.
Article in English | MEDLINE | ID: mdl-38447709

ABSTRACT

Sign-tracking is a Pavlovian conditioned approach behavior thought to be important in understanding cue-driven relapse to drug use, and strategies for reducing sign-tracking may have some benefit in preventing relapse. A previous study successfully employed the NMDA receptor antagonist MK-801 in preventing the development of sign-tracking (but not goal-tracking) in a conditioned approach task. In this study, we focused on whether MK-801 would have similar effects on previously established sign-tracking behavior. MK-801 was administered after training in a standard sign-/goal-tracking task using a retractable lever as a conditioned stimulus and a sucrose pellet as unconditioned stimulus. It was found that MK-801 increased measures of both sign- and goal-tracking in subjects who had previously learned the task. The NMDA receptor appears to play a complex role in governing behavior related to sign-tracking.


Subject(s)
Dizocilpine Maleate , Goals , Humans , Rats , Animals , Male , Rats, Sprague-Dawley , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate , Motivation , Recurrence , Cues , Reward
16.
Neurobiol Dis ; 194: 106466, 2024 May.
Article in English | MEDLINE | ID: mdl-38471625

ABSTRACT

In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.


Subject(s)
Neuralgia , Receptors, N-Methyl-D-Aspartate , Semaphorin-3A , Animals , Rats , Hyperalgesia , Insular Cortex , Neuralgia/therapy , Neuralgia/metabolism , Neuronal Plasticity/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Semaphorin-3A/metabolism
18.
Transl Psychiatry ; 14(1): 139, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459000

ABSTRACT

The global impact of SARS-CoV-2 infection has raised concerns about secondary diseases beyond acute illness. This review explores the significance and potential underlying mechanisms of how SARS-CoV-2 infection might elicit an immune response targeting N-methyl-D-aspartate (NMDA) receptors, and its implications for autoimmune-driven neuropsychiatric manifestations. We identified 19 published case reports of NMDA receptor encephalitis associated with SARS-CoV-2 infection or vaccination by a systematic literature search. The significance of these reports was limited since it is not clear if a coincidental or causal relationship exists between SARS-CoV-2 infection or vaccination and manifestation of NMDA receptor encephalitis. The included studies were hampered by difficulties in establishing if these patients had pre-existing NMDA receptor antibodies which entered the brain by infection- or vaccination-associated transient blood-brain barrier leakage. In addition, four cases had comorbid ovarian teratoma, which is a known trigger for development of NMDA receptor encephalitis. Considering that billions of people have contracted COVID-19 or have been vaccinated against this virus, the publication of only 19 case reports with a possible link to NMDA receptor encephalitis, indicates that it is rare. In conclusion, these findings do not support the case that SARS-CoV-2 infection or vaccination led to an increase of existing or de novo encephalitis mediated by an autoimmune response targeting NMDA receptor function. Nevertheless, this work underscores the importance of ongoing vigilance in monitoring viral outbreaks and their potential impact on the central nervous system through basic, epidemiological and translational research.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , COVID-19 , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Antibodies , COVID-19/complications , Receptors, N-Methyl-D-Aspartate , SARS-CoV-2
19.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538865

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Child , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Epilepsy/genetics , Mutation, Missense , Phenotype
20.
Front Immunol ; 15: 1299898, 2024.
Article in English | MEDLINE | ID: mdl-38495877

ABSTRACT

Objective: The objective of this study was to elucidate the contribution of cerebrospinal fluid (CSF) antibody titers (AT) and sex to acute cerebral blood flow (CBF) in patients diagnosed with anti-N-methyl-d-aspartate receptor autoimmune encephalitis (NMDAR AE). Methods: Forty-five patients diagnosed with NMDAR AE were recruited from December 2016 to January 2023. The acute CBF in patients with NMDAR AE at the early stage of the disease was analyzed using arterial spin labeling. The groups were compared based on CSF AT and sex. The connectivity of the CBF in the region of interest was also compared between groups. Results: The patients with different CSF AT exhibited varied brain regions with CBF abnormalities compared to the healthy subjects (p = 0.001, cluster-level FWE corrected). High antibody titers (HAT) in CSF contributed to more brain regions with CBF alterations in female patients than in female patients with low antibody titers (LAT) in CSF (p = 0.001, cluster-level FWE corrected). Female patients with HAT in CSF displayed more decreased CBF in the left post cingulum gyrus, left precuneus, left calcarine, and left middle cingulum gyrus than the male patients with the same AT in CSF (p = 0.001, cluster-level FWE corrected). All patients with NMDAR AE showed increased CBF in the left putamen (Putamen_L) and left amygdala (Amygdala_L) and decreased CBF in the right precuneus (Precuneus_R), which suggests that these are diagnostic CBF markers for NMDAR AE. Conclusion: CSF AT and sex contributed to CBF abnormalities in the patients diagnosed with NMDAR AE. Altered CBF might potentially serve as the diagnostic marker for NMDAR AE.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Encephalitis , Hashimoto Disease , Humans , Male , Female , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain/diagnostic imaging , Receptors, N-Methyl-D-Aspartate , Cerebrovascular Circulation
SELECTION OF CITATIONS
SEARCH DETAIL
...